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ABSTRACT: In this paper, wc introduce multiple turbo codes and a suit-
abledecoder structure derive.d from an approximation to the maximum a
posterior probability (MAP) decision rule, which is substantially different
from the decoder for two-code-based encoders. We developed new rate
1/3 and 2/3 constituent codes to be used in the turbo encoder structure.
Thesecodes, for 2 to 32 states, are designed by using primitive polyno-
mials. The resulting turbo codes have rates b/n, b= 1, 2 and n =3, 4,
and include random interleavers for better asymptotic performance. A
rate 2/4 code with 16QAM modulation was used to realize a turbo trel-
lis coded modulation (TT'CM) scheme at 2 bit/sec/Hz throughput, whose
performance is within 1dB from the Shannon limit at BER=10"5.

1. INTRODUCTION

Coding theorists have traditionally attacked the problem of designing
good codes by developing codes with alot of structure, which lends itself
to feasible decoders, although coding theory suggests that codes chosen
“at random” should perform well if their block size islarge enough. The
challenge to find practical decoders for “amost” random, large codes has
not been seriously considered until recently. Perhaps the most exciting
and potentially important development in coding theory in recent years
has been the dramatic announcement of “turbo codes’ by Berrou etal.in
1993 [7]. The announced performance of these codes was so good that
the initial reaction of the coding establishment was deep skepticism, but
recently researchers around the world have been able to reproduce those
results [15, 18, 9]. The introduction of turbo codes has opened a whole
new way of looking at the problem of constructing good codes [5] and
decoding thcm with low complexity [7, 2].

These codes achicve near-Shannon-linlit error correction performance
with relatively simple component codes and large interleaves. A required
Ey/N, of 0.7 dB was reported for a bit error rate (BER) of 10-5 for arate
1/2 turbo code [7].

The purpose of this paper is to: (1) Design the best component codes
for turbo codes of various rates; (2) Describe a suitable trellis termination
rule; (3) Design pseudo-random interleavers; (4) Design turbo codes with
multiple component codes; (5) Design an iterative decoding method for
multiple turbo codes by approximating the optimum bit decision rule. (6)
Design of low-rate turbo codes for power limited channels (deep-space
communications) and CDPMA; (7) Design of high rate turbo codes for
bandwidth limited channels (Turbo trellis coded modulation); (8) Give
examples and simulation results.

I 1. PARALLEL CONCATENATION OF CONVOLUTIONAL
Cones

The codes considered in this paper consist of the parallel concatenation
of multiple convolutiona codes with random interleavers (permutations)
at the input of each encoder. This extends the original results on turbo
codes reported in [7], which considered turbo codes formed from just two
constituent codes and overall rate 1/2.

Figure 1 illustrates a particular example that will be used in this paper
to verify the performance of these codes. The encoder contains three
recursive binary convolutiona encoders, with m y, ##2 and ms memory
cells, respectively. In general, the three component encoders may not
be identical and may not have identical code rates. The first component
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Figure 1: Example of encoder with three codes

encoder operates directly (or through 1) on the information bit sequence
U=(uy,. ... uny Of length N, producing the two output sequences xp
and xI. The second component encoder operates on a reordered sequence
of information bits, uz, produced by an interleaver, 72, of length N, and
outputs the sequence x». Similarly, subsequent component encoders op-
erate on a reordered sequence of information bits, u;, produced by inter-
leaver ;, and output the sequence x;. ‘f he interleave is a pseudorandom
block scr ambler defined by a permutation of N elements with no repe-
titions: A complete block. is read into the the interleaver and read out
in a specified (fixed) random order. The same interleaver is used re-
peatedly for al subsequent blocks. Figure 1 shows an example where a
rate r = 1/n = 1/4 code is generated by three component codes with
M= m; = my = m =2, producing the outputs xy = u, x;=u. g1/go,

X2:= U, g,/gg,and X,==u3-g;/go (here xr; is assumed to be an identity,
i.e,, no permutation), where the generator polynomials gy and g have
octal repiesentation (7)aciar and (S)ociar, respectively. Note that various
code rates can be obtained by proper puncturing of x,, X,, X,, and even
X if the decoder works (for an example, see Section VII1).

We use the encoder in Fig.i1to generate an (n(N + m), N) block
code, where the m tail bits of code 2 and code 3 are not transmitted. Since
the component encoders are recursive, it is not sufficient to set the last
m information bits to zero in order to drive the encoder to the all-zero
date, i.e., toterminate the trellis. The termination (tail) sequence depends
on the state of each component encoder after N bits, which makes it
impossible to termiinate all component encoders with m predetermined
tail bits. This issue, which had not been resolved in the original turbo
code implementation, can be dealt with by applying the simple method
described in [9], which is valid for any number of component codes. A
more. complicated method is described in [17].

The design of the constituent convolutional codes, which are not neces-
sarily optimum convolutiona codes, was originally reported in [5] for rate
1/n codes. In this paper we extend the results to rate b/n codes. It was
suggested in [2] that good random codes are obtained if g, is a primitive
polynomia (without proof), This suggestion was used in [5] to obtain




“good” rate 1/2 congtituent codes, and, in this paper, to obtain “good” rate
1/3 and 2/3 constituent codes. A more precise definition of “good” codes
isgivenin Sectionstlland V.

111. RANDOM INTERLEAVERS

The challenge in designing good turbo codes is to find the pairing of
codewords from each individua encoder,induced by aparticular set of
interleavers, Intuitively, we would like to avoid pa| ring low-wei ght code-
words from one encoder with low-weight words from the other encoders.
In this section we examine the effects of random interieavers on the low-
weight input sequences which may produce low output codeword weights.
The input sequences with asingle “ 1" will appear again in the other en-
coders, for any choice of interleavers. This motivates the use of recur-
sive encoders, since the output weight duc to weight-l input sequences
u= (., .001000 ...) is large. Now we briefly examine the issue of
whether one or more random interleavers can avoid matching small sep-
arations between the 1'sofaweight-2 data sequence with equally small
separations between the!’s of its permuted version(s). Consider, for ex-
ample, a particular weight-2data sequence (o. + 001001000 ..y, which
corresponds to a low-weight codeword in each of the encoders of Fig. 1.
If we randomly select an interleaver of size N, the probability that this
sequence will be permuted into another sequence of the same form is
roughly 2/N (assuming that N is large and ignoring minor edge effects).
The probability that such an unfortunate pairing happens for at least one
possible position of the original sequence (- .0 001001000 ...) within the
block size of N is approximatelyl— (1—2/N)¥=~ 1 —e-*. This im-
plies that the minimum distance of a two-code turbo code constructed with
a random permutation snot likely tobc much higher than the encoded
weight of such an unpermuted weight-2 data sequence. By contrast, if
we use three codes and two different interleavers, the probability that a
particular sequence (- -- 001001000 ...) will be reproduced by both in-
terleavers is only (2/N)?.Now the probability of findi ng such an unfor-

tunate data SGQUCI}$C somewhere within the block of size N is roughly
1-T1 - (2/iv):*i = 4/N. Thus, it is probable that a three-code turbo

code using two random interlcavers will see an increase in its minimum
distance beyond the encoded weight of an unpermuted weight-2 data se-
quence. This argument can be extended to account for other weight-2 data
sequences that may also produce low-weight codewords. For compari-
son, let us consider a weight-3 data sequence such as (- - . 0011100.0 -).
The probability that this sequence is reproduced with onc random in-
terleaver is roughly 6/N*, and the probability that some sequence of
the form (--- 001 1100 ...) is paired with another of the same form is
1-(1—6/N)¥~ 6/N. Thus, for large block sizes, the bad weight-3
data sequences have a small probability of being matched with bad weight-
3 permuted data sequences, even in a two-code system. For a turbo code
using three codes and two random int%rr!_caycrsr thitshg{otll)abi lrir;[}/niismegr%n
smaller, 1 — [1 _ (6/N2SJT3_6/N3. isimplies e

distance codeword of the turbo code in Fig. 1 is more likely to result
from aweight-2 data sequence of the form (- - - 001001000. - -) than from
the weight-3 sequence (- - - 0011100. . ). Higher weight sequences have
an even smaller probability of reproducing themselves after being passed
through the random interleavers.

For aturbo code using ¢ codes and 9 — 1 interleavers, the probability
that a weight-n data sequence will be reproduced somewhere within the
block by allg — 1 permutations is of the form 1- [1 -- (ﬂ/N”"')""]N,
where 8 is anumber that depends on the weight-n datasequence but does
not increase with block size N. For large N, this probability is proportional
to(1/N)"9~"9, which falls off rapidly with N, when n and q arc greater
than two. Furthermore, the symmetry of this expression indicates that
increasingeither the weight of the datasequence h or the number of codes
¢ has roughly the same effect on lowering this probability.

In summary, from the above arguments, wc conclude that weight-2

data sequences arc an important factor in the design of the constituent
codes, and that higher weight sequences have successively decreasing
importance [12, 11]. Also, increasing the number of codes and, corre-
spondingly, the number of interieavers, makes it more and more likely
that the bad input sequences will bc broken up by one or more of the
permutations.

The overall minimum distance is not the most important characteristic
of the turbo code if it is due to weight-n data sequences with n> 2. The
performance of turbo codes with random interleaves can be obtained by
transfer function bounding techniques[6, 4, 12, 13].

V. DESIGNOF ParRTIiALLY RANDOM INTERLEAVERS

Interleavers should be capable of spreading |ow-weight input sequences so
that the resulting codeword has high weight. In order to break low-weight
sequences, random interleavers are desirable.

We have designed semirandom permutations (interleaves) by gener-
ating random integers t, 1 <i <N, without replacement, We define
an “S-random” permutation as follows: Each randomly selected integer
is compared to S previously selected integers. If the current selection
is equal to any S previous selections within a distance of %3S, then the
current selection is rejected, This process is repeated until al N integers
arc selected. The searching time for this algorithm increases with S and
is not guaranteed to finish successfully. However, we have observed that
choosing § < /N /2 usually produces a solution in a reasonable time.
Note that for § = 1, we have a purely random interleaver.

V. DESIGN OF CONSTITUENT ENCODERS

As discussed in Section |1, maximizing the weight of output codewords
corresponding to weight-2 data sequences gives the best BER performance
for moderate bit SNK as the random interleaver size N gets large. In this
region the dominant term in the expression for bit error probability of
turbo codes is
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where d!, is the minimum parity-weight (weight duc to parity checks only)
of the codewords at the output of the j® constituent code due to weight-2
data sequences, and j? is a constant independent of N. Define d,,=
dﬁ ,+ 2 as the minimum output weight including panty and systematic
bits.
Theorem. For any r = ;% recursive systematic convolutional encoder
with generator matrix

where /oxs isa b x b identity matrix, deglhi (D) < my, h;(D) # ho(D),

i = 1,2 .. . bandho(P) is aprimitive polynomial-of degree m;, the
following upper bound holds
2mj—l
di, < | 542

Proof. In the state diagram of any recursive systematic convolutional
encoder with gererator matrix G, there exists at least two non-overlapping
loops corresponding to all-zero input sequences. If ho(D) is a primitive
polynomial there arc two loops. one corresponding to zero-input, zero-
output sequences with branch length one, and the other corresponding
to zero-input but non-zero-output sequences with branch length 2™/ —1,



which is the period of maximal length (ML) linear feedback shift reglsters
(FSR) with degree m ;. The parity codeword weight ©f this loopis2™i-
due to the balance property of ML. sequences. This weight depends only
on the degree of the primitive polynomia and isindependent of 4; (1)) duc
to the invariance to initial conditions of ML FSR sequences. In general,
the output of the encoder is a linear function of its input and current state.
So, for any output we may consider, provided it depends at least on one
component of the state and it isnot Ao (D), then the weight of a zero input
loop is 2™, by the shift-and-add property of ML FSRs.
A
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Flgure 2: Canonical representation of a rate 'il encoder (b= 2
j=3).

Consider the canonical representation of a rate b + 1/b encoder as
shown in Fig. 2, when the switch isin position A. Let S" (D) be the state

of the encoder at time k with coefficients S(,. $. .5&, _!, where the
output of the encoder at timek is
b
x=s;l, + ;:u,*h,-,m, )
ol

The state transition for input u}, ..., u} at time kis givenby

b
Sk(D) :[Zu,*h,-(l)) + DS*! (D)l mod hy(D) )
i=)

From the all-zero state we can enter the zero-input loop with non-zero
inputsymbolsuy, . ... up a State

b

S" (D)= uihi (Dymod k(D) 3)

i=1

From the same non-zero input symbol we leave exactly at date §771 (D)
back to the all zero state where S'm’ (D) satisfies

SY(D) = DS YD) mod ho(D) )

i.e.s?" - 1(D) isthe “predecessor”to state S (D) in the zero- -inputloop.

If the most significant bit of the predecessor state is zero, i.e., Sﬁ, ’,1' =

then the branch output for the transition from S? ~1(D) 10 §'(D) is zero

for zero input symbol. Now consider any weight 1 input symbol, i.e.,
uy=1forj=1iandu;=0for j# i,j=12,... b The question
is: what arc the conditions on the coefficients hi(D) such that, if we enter
with weight 1 input symbol into the zero-input loop at state S' (D), the
most significant bit of the “predecessor” state S2 - (1) be zero. Using
eqs. 3 and 4 we can establish that

hio 4 hipm,= O (5)

Obviously, when we enter the zero-input loop from the all-zero state and
when wc lcave thisloop to go back to the ali-zero state we would like the
parity outjut to he equalto 1.Fromeq.1 and 5 we require

}1,() =] hf.mj = 1 (6)

With this condition wc can enter the. zero-input loop with a weight-1
symbol at state S'(/?)and then leave [his loop from state g1 (D) back
to theall-zero state, for the same weight-1 input. The parity-weight of the
codeword corresponding, to weight-2 data sequences is then 27/1 + 2,
where the first term is the weight of the Zero-input loop and the. second
term is duc to the parity bit appearing when entering and leaving the loop.
If b= 1 the proof is complete and the condition to achieve the upper
bound is given by 6. For &= 2 wc may enter the zero-input loop with
u =10 at state S' (D) and leave the loop to the zero state with u = 01
at some state S/ (D). If we can choose S/ (D) such that the output weight
of the zeto input loop from $' ()10 $/(D) is exactly 2™/~ /2 then the
output weight of the Zero-input loop from $¥#1(D) to ST (Dyis exactly
2m;1 /2, and the minimum weight of codewords corresponding to some
weigh t-2 data sequences is

2mi—l

2
In general, for any & if wc extend the procedure for b = 2, the minimum
weight of the codewords corresponding to weight-2 data sequencesis

+2

2m,>~l

J+2 U

where {x | isthe largest integer less than or equal to x. Clearly thisis the
best achievable weight for the minimum weight codeword corresponding
to weight-2 data sequences. This upper bound can be achieved if the
maximuta run length of 1‘s (m;) in the zero-input loop dots not exceed
lgm-;;—lJv where b is a power of 2.

The run property of MI.FSRs can help usin designing codes achieving
this upper bound. Consider only runs of 1's with length 1, for O < I <
m;-- 1, then there are 2™2-" runs of length 1, no runs of length m ;--1,
and only one run of length 1 ;. For amore detailed proof and conditions
when b is not a power of 2 scc [14] O
Corollary. For any r = b/n recursive systematic convolutional code with
binputs, » systematic outputs and n—b parity output bits using a primitive
feedback. generator, we have

om -1
dl, < (n-—b) [1»%—] + 2] 8

Proof. A trivial solution is to repeat the parity output of arate ;,—'}l code.
Then if this code achieves the upper bound so dots a rate b/n code, D
There is an advantage in using b >1 since the bound in eq.(8) for rate
b/bn codes is larger than the bound for rate 1 /n codes.

Best Jtate 2/3 Constituent Codes. Wc obtained the best rate
2/3codes as shown in Table 1, where d7, is simply denoted by d; and
dy=d? + 2. Mini mum weight codewords corresponding to weight-3
data sequences arc denoted by di, din is the minimum distance of the
code, andk=m;+41in al tables. By “best” we only mean codes with
large d; for agiven m;.

Best 1 tate 4/5, 1 6-State Constituent Codes. All three codes
found have four common generators Ay = 23, A= 35, fi2 = 31, hy= 37,
plus an additional generator h4= 27, or hy = 21, or hs= 33, all yielding
d2 = 5and dmin = 4

Trellis Termination for b/n codes with canonical realiza-
tion. Itellis termination is performed (for b = 2) by setting the switch
shown in Fig, 2in position B. The tap coefficients dio, . . . . a;m,; s for
i=1,72 .  bcanbeobtained by repcatcd usc of cg. (2), and by solving




k Code Generator dy | dy | duin
3| ho= 7Tk =3M=5 | 4|3 3
4 h()'-:-‘ 13 h,= ]5}12-’—"— 17 5 44 4
5( h,=23 hy=35h=27| 8| %| 5
hy=23h=35m=33| 8| %5 5
6 || _ho =45 hl:_éfi_h_z=6l__ 2| 6| 6
Table 1: Best rate 2/3 constituent codes,
'k Code Generator dy | d, ﬁ_;,.#
3| 2o=78 =5 43| 3~
4 || go=13g=15}|5 4 4
5 g=23 =37 (7|4 4
go =23 g =31 7 4 4
gn=23¢g =3316 5 5
g=23g=35|6|4]| 4
| || 8n=23 2, =276 | 4 |_4

Table 2: Best rate 1/2 punctured constituent codes.

the resulting equations. ‘f'he trellis can be terminated in state zero with at
least m,; /b and at most 7 j clock cycles (see [ 14] for details). WhenFig.3
is extended to multiple input bits (b parallel feedback shift registers), a
switch should be used for each input hit.
Best Punctured Rate 1/2 Constituent Codes. A rate 2/3
constituent code can be derived by puncturing the parity bit of arate 1/2
recursive systematic convolutional code. If the parity puncturing pattern is
= [10] or P = [01] then wc show in [14] that it is impossible to achieve
the upper bound on d; = dj +-2 for rate 2/3 codes. (A Puncturing pattern
P has zeros where symbols are removed. The best rate 1/2 constituent
codes with puncturing pattern P = [10] arc given in Table 2.
Best Rate1/3 Constituent Codes. For rate 1/n codes the upper
bound in cg. 7 for b= 1 reduces to

dl, < (n- DE™™' +2)

This upper bound was originally derived in [5], where the best rate 1/2
constituent codes meeting the bound were obtained. Here we present a
simple proof based on our previous general result on rate b/n codes. Then
we obtain the best rate 1/3 codes without parity repetition. In [14] we
illustrate how parity repetition is undesirable for codes to be decoded with
turbo decoders.
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[ gore 3: Rate 1/n code.

Consider a rate 1/n code shown in Fig.3. In this figure gs(D) is
assumed to be a primitive polynomial. As discussed above, the output
weight of the zero-input loop per parity bit is 2”771 independent of thbe
choice of gi(D),i = 1,2, ..., n — 1, provided that g,(D) # O and

T ‘Code (-cncrator d dy | dmin
“go = 3 g1= 2 ¢g=1 4 co 4
8o = 7 81 = 5 £2 8 7 7
g0=: 13 gy==17g=15 | 14 [ 10 | 10
8o = 23 g = 33 g2 = 37 22 12 10

_ go == 23 g == 358 =27 22 ﬂ . 11
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‘f'able 3: Best rate 1/3 constituent codes (without parity repetition).

that g;(1)) # go(12), by the shift-and-add and balance properties of ML
FSRs. 1f S(D) represents the state polynomial, then we can enter the

zero input loop onIy at stale, S' SD = 1and leave the Ioc?P to the all-zero
state at state $277 ) = Th,i™ panty output on the transition

SY(D)-> 87" 1) with zero input bit is
iz Bio + Bimy

If &o=1and 8in,;=1fori==1,.... n—1, the output weight of the
encoder for that transition iszero. The output weight when entering and
leaving the zero-input loop is (n —1) for each case. In addition, the output
weight of the zero-input loop will be (n—1)2™-!. Thus We can achieve
the. upper bound.

We obtained the best rate 1/3 codes without parity repetition as shown
in Table 3, where d,= dj -2 represents the minimum Output weight
given by weight-2 data sequences. The best rate 1/2 constituent codes are
given by go and g, in this table, as was also reported in [5].

VI. TurBO 1)ECODING FOR MurLTIPLE CODES

In this section, we consider decoding algorithms for multiple-code turbo
codes. In general, the advantage of using three or more constituent codes
is that the corresponding two or more interleaves have a better chance
to bresk sequences that were not broken by another interleaver. The
disadvantage is that, for an overall desired code rate, each code must
be punctured more, resulting in weaker congtituent codes. Also shorter
constraint length codes should be used for successful operation of the turbo
decoder. In our experiments, we have used randomly selected interleavers
and S-random interleavers.

Let u, be abinary random variable taking valuesin { O, 1}, represent-
ing thbc sequence of information bits u = (uy, . . . . ux). The MAP ago-
rithm [1] providesthe log likelihood ratio L4 given the received symbols
y:

— Plur=11Y)
Ly = log Plup=01Y)
3 royw ], P ,
_ _J‘lu!h] J#k l(u!ZI)
= log + Plug=0) )

Lt ”tol(ym)l l Flup

S >[>——>(i)——> yo=p (2u-1) + ng

u
—1 ! ENCODER 1 I.—’(->l>——>%)-—> yi=p (2X4-1) + Ny

ny

Figure 4: Channel Model

For efficient computation of Eq. (9) when the a priori probabilities P (u;)
are nonuniform, the modified MAP agorithm in [15] is simpler to use
than the version considered in [7]. Therefore, in this paper, we use the
modified MAP algorithm of [1 5].
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If therate b/n congtituent code is not equivalent to a punctured rate
1/n’ code or if turbo trellis coded modulation is used, we can first use
the symbol MAP agorithm [1] to compute the log-likelihood ratio of a
symbol U = uy,42.. ... up given the observation y as

1o P(uly)
* = %8 poly)

where O corresponds to the al-zero symbol. Then we obtain the log-
likelihood ratios of the. jth bit within the symbol by

A)
Luu, 1€

LUu,~

In this way the turbo decoder operates on bits and bit, rather than symbol,
interleaving is used.

The channel model is shown in Fig. 4, where the ng’s and the ny’s
are independent identically distributed (i.i.d.) zero-mean Gaussian ran-
dom variables with unit variance, and p = +/2rE,/N, isthe SNR. The
same model is used for each encoder. To explain the basic decoding con-
cept, we restrict ourselves to three codes, but extension to several codes
is straightforward. In order to simplify the notation, consider the combi-
nation of permuter and encoder as a block code with input u and outputs
Xi,i = 0, 1, 2, 3(xo = u) and the corresponding received sequences Yi»
i=0,1,2,3. The optimum bit decision metric on each bit is (for data
with uniform a priori probabilities)

2 =1 POOID PGP (y,10) P(yalu)
Dtg=o POOIWPHIWP(2AW) p(yyju) 2o

L) = loge=————

Ly =log

but in practice, we cannot compute Eg. (1 O) for large N because the per-
mutations rr,, 7r,imply that y,and y,are no longer simple convolutional
encodings of U. Suppose that we evaluate P(y;]u),i = O, 2,3 inEq.(10)
using Bayes’ rule and using the following approximation:

N
Py~ | B an
k=1
Note that P{uly;) is not separable in general. However, for i = 0,
P(u] yo) is separable; hence, Eq. (11) holds with equality. If such an
approximation, i.e., Eq. (1 1), can be obtained, we can use it in Eq. (10)
for i =2 and i = 3 (by Bayes' rule) to complete the algorithm. A
reasonable criterion for this approximation is to choose r]:l:|Pi (uk)SU~Ch
that it minimizes the Kullback distance or free energy [3, 16]. Define Lix

by

- eu‘l.‘,»,
Piuy) = = (12)
1 4 elin
where #x € { O, 1}. Then the Kullback distance is given by
Zlnl eLix e il, ugLig

F L - (13)
o= Lﬂk l<1+e'~"> I 0 & ey Pealy)

Minimizing F (1) involves forward and backward recursions analogous
to the MAP decoding algorithm, but we have not attempted this approach
in this work. Instead of using Eq. (13) to obtain (Pi) or, equivalently,
{Lit}, we use Egs.(11) and (12) for i = 0,2,3 (by Bayes’rule) to
express Eq. (10) as

L = f()’h Lo, I-JZv fJ3, k) + i/()k + it2k =+ ng (14)

where Lo = 2pyoc (for binary modulation) and
n " ell/(i.o/i L;/
J

f(y]‘r-,‘p,fl ,‘} E e |n — iy
2 J;E) Iog Wig=0 ])(yl’u)l'[ u,(i,0/+i,;j .lil})

We can use Egs. (I and (12) again, but this time for /1 =0.1, 3,t0

express Egq. (10) as
L= f(y2. Ly, Ly, Ta k) + Lo + L+ Ly (16)
and similarly,
= f(y3, Y. T, Lo k) 4 Lo+ Lo+ Ly (17)

A solution to Egs. (14), (16), and (17) is

Lu = flyi Ly Lo Ly k)
Ly = fQya Lo, Ly, L3 k)
Ly == f(ys Lo Ly, Lo k) (18)

fork = 1,2, -...N, provided that a solution toBg.(18) dots indeed exist.
Thefinal decision is then based on

L= i;()k -1 Lu- + sz + i/]k (19

which is passed through a bard limiter with zero threshold. We attempted
to solve the nonlinear equations in Eq. (18) for L, 12, and L; by using
tbe iterative procedure

LoD = o™ £y, T L9 L, k) (20)

fork=1,2,---, N, iterating on m. Similar recursions hold for L% and
Lg',:" The gain «} "should be equal to one, but we noticed experimentally
that better convergence can be obtained by optimizing this gain for each
iteration, starting from a value slightly less than one and increasing toward
one with the iterations, as is often done in simulated annealing methods.
We start the recursion with the initial condition’L\" =¥.y” =L{” = Lo.

For the computation of f(-), wc usc the mOdIerd MAP algorlthm as
described in [9] with permuters (direct and inverse) where needed, as
shown in Fig. 5. The MAI" algorithm always starts and ends at tbe all-
zero state since we always terminate the trellis as described in [9]. Wc
assumed 7y = | identity; however, any 7 can be used. The overall
decoder is composed of block decoders connected asin Fig. 5, which can
be implemented as a pipeline or by feedback. In [11] we proposed an
alternative version of the above dccoder which is more appropriate for use
in turbo trellis coded modulation, i.e., set {-0= O and consider y. as part
of y,.If the systematic hits are distributed among encoders, we use the
same distribution for y, among the MAP decoders.

At this point, further approximation for turbo decoding is possible if
one term corresponding to a sequence u dominates other terms in the
summation in the numerator and denominator of F4. (15), ‘f'hen the sum-
mations in Eq. (15) caun bereplaced by “maximum” operations with the
same indices, i.e, replacing ) _,,. wp=i With (™ fori=0, 1. A similar
approximation can be used for Lyvand Ly in Lq (18). This suboptimum
decoder then corresponds to a turbo decoder that uses soft output Viterbi
(SOVA) type decoders rather than MAP decoders. Further approxima-
tions, i.e., replacing ~ with max can also be used in the MAP agorithm.

VI1]. MurripLi-CODE AL G ORITHM APPLIED TO TwWO
CoDnEs
For turbo codes with only two constituent codes, Eq. (20) reduces to

LY o™ flye Do, TS0 k)
L a§""f(yz‘ Lo T k)
fork = 1,2, .,Nandm = 1,2,..., where, for each iteration, a{™ and
('n)

canbe optmn/cd (siinulated anneallng) or setto 1 for S|mpI|C|ty The

2Note that the componcn(s of the L: S corresponding to the tail bits, i.e., Lik,
fork=N+1,... N4 M,are set to zero for al iterations,
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Figure 5: Multiple Turbo Decoder Structure

decoding configuration for two codes, according to the previous section,
can be obtained from Fig. 5. In this special case, since the paths in Fig. s
are digjoint, the decoder structure can be reduced t@ serial mode structure
if desired.

If we optimize an") and a§_'"), our method for two codes is similar to the
decoding method proposed in [7], which requires estimates of the vari-
ances of Ly and Ly for each iteration in the presence of errors. In the
method proposed in [15], the received “systematic” observation was sub-
tracted from L, which may result in performance degradation. In [18]
the method proposed in [1 S] was used but the received “ systematic” ob-
servation was interleaved and provided to decoder 2. In [9], wc argued
that there is no need to interleave the received “systematic” observation
and provide it to decoder 2, since Lot dots this job. It seems that our
proposed method with o™ and o™ equal to1is simple and achieves the
same performance reported in [18] for rate 1/2 codes.

VIIl. PERFORMANCE aAnD SiMuLATION RESULTS

The bit error rate performance of these codes was evaluated by using
transfer function bounds [6] [13]. In [13] it was shown that transfer
function bounds are very useful for signal-to-noise ratios above the cutoff
rate threshold and that they cannot accurately predict performance in the
region between cutoff rate and capacity. In this region, the performance
was computed by simulation.

Figure. 6 shows the performance of turbo codes with m iterations
and the following generators. For two K = 5 constituent codes,
(i, gl/g()v 82/80) and (g I/g())s with 80 = (37)oc/al- g1= (33)orml and
0,= (25)saat; For three K ==3 codes, (1, g:1/g¢) and (g:/80) with
go = (Nociat and &1 = (S)ociats For three K = 4 codes, (1, g; /go) and
(81/80) with 80==(17)oea and &1= (I Docrar-

Further results at BER=10"° were obtained for two constituent codes
with interleaving size N == 16384 as follows. For a rate 1/2 turbo code
using two codes, K = 2 (differential encoder) with (g/go) where gy =

(Docearand g1 = (Dpesar, and K = 5 with (9,/g0) where g0 = 23)oca
and g, = (33) oera the required bit SNR was 0.8S dB. This is an example.
where the systematic bits are not transmitted. For rate 1/3, we used two
K == 5 codes, (1, gi/gv)and (&1/80) with go = (23),qm and g =
(33) e @nd Obtained bit SNR=0.25 dB. For rate 1/4, wc used two K =
5 codes with (1, g1/&0.82/8&) and (€1/80) with go = (23)oerar, 81==
(33)octal and &2 = (25) 1,1 and obtained bit SNR = 0dB. A fixed number
of iterations m = 20 was used for al cases. Many of these codes may
actually require a smaller number of iterations for BER=10"* or below.

The simulation performance of other codes reported in this paper is
still in progress.
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Figure 6: Performance of turbo codes

I X. TurBO TRELLIS CODED MODULATION

A pragmatic approach for turbo codes with multilevel modulation was
proposed in [8]. Here we propose a different approach that outperforms
the results in [8] when M-QAM modulation is used. A straightforward
method to use turbo codes for multilevel modulation is first to select a
rate ;,% constituent code where the outputs are mapped to a 2%+ |-level
modulation based on Ungerboeck’s set partitioning method (i.e., we can
usc Ungerboeck’s codes with feedback). 1f MPSK modulation is used, for
every b bits at the input of the turbo encoder we transmit two consecutive
2b41pSK signals, one per each encoder output. ‘I’ his results in a throughput
of b/2 bits/sec/Hz.Jf M-QAM modulation is used, we map the b + 1
outputs of thefirst component code to the 264! in-phase levels (I-channel)
ofa22b’'2-QAM signal set, and the b + 1 outputs of the second component
code to the 254! quadrature levels (Q-channel). The throughput of this
system isb bits/see/H?.

First, we note that these methods require more levels of modulation than
conventional ‘f’CM, which is not desirable in practice. Second, the input
information sequences are used twice in the output modulation symbols,
whichis also not desirable., An obvious remedy isto puncture the output
symbols of each trellis code and select the puncturing pattern such that
the output symbols of the turbo code contain the input information only
once. If the output symbols of the first encoder is punctured, for example
as 101 OIO. ... the. puncturing pattern of the second trellis code is non-
uniform and depends on the particular choice of interleaver. Now for
example, for 2641 .pSK athroughput b can be achicved. This method has
two drawbacks, it complicates the encoder and decoder and the reliability
of punctured symbols may not be reproducible at the decoder. A better
remedy, for 325 (b even),is to select the b/2 systematic outputs and
puncture the rest of the. systematic outputs, but keep the parity bit of the
;le code (Note that the ;5’», may have been already obtained by puncturing
aratel/2 code). ‘I hen do the same to the second constituent code but select
only those systematic bits which were punctured in the first encoder. This
method requires at least two imcrle.avers: thefirst intericaver permutes the
bitsselccted by the first encoder and the second interleaver those punctured




by the first encoder. For MPSK (or MQAM) we can use 2'+%/2 PSK
symbols (or 2!+#2 QAM symbols) per encoder and achieve throughput
b/2. For M-QAM we can also use 21+4b/2levels in the I-channel and 2'+#/2
levelsin the Q-channel, and achieve athroughput of b bits/sec/liz. These
methods are equivalent to amulti-dimensional trellis coded modulation
scheme (in this case, two multi-level symbols per branch) which uses
2612 % 2345/2 sympols per branch, where the first symbol in the branch
(which only depends on uncoded information) is punctured. Now, with
these methods the reliability of the punctured symbols is reproducible
at the decoder. Obviously, the constituent codes for a given modulation
should be redesigned based on the Euclidean distance. In this paper we
give one example forb = 2 with 16QAM modul ation where for simplicity
wc can use the 2/3 codes in Table 1 with Gray code mapping. Note that this
may result in suboptimum constituent codes for multi-level modulation.
The turbo encoder with 16QAM and two clock cycle trellis termination
is shown in Fig. 7. The BER performance of this code with the turbo
decoding structure for two codes discussed in Sec. VI isgivenin Fig. 8.
For permutations =y and 72 wc used S-random permutations with S=40
and S=32 with Mock size of 16384 bits. For 8PSK we used the best
16-date rate 4/5 code given in Sec. V to achieve throughput 2. More
examples for 8PSK and 16QAM are given in [14].
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Figure 7: Turbo Trellis Coded Modulation, 16QAM, 2 bits/see/Hz

X. CONCLUSIONS

In this paper wc have shown that powerful turbo codes can be obtained if
multiple constituent codes are used. Wc proposed an iterative decoding
method for multiple turbo codes by approximating the optimum bit deci-
sion rule. Construction of a partially random interlcaver was discussed.
A probabilistic argument was used to show the importance of maximizing
the minimum output weight of constituent codes duc to weight-2 input
sequences in the design of turbo codes. We obtained an upper bound on
this minimum output weight for rate b/n constituent codes. We found the
best rate 2/3 ,1/3 and 16-state rate 4/5 constituent codes that can be used
in the design of multiple turbo codes. Wc proposednew schemes that can
be used for power and bandwidth efficient turbo trellis coded modulation.
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